Associated Topics || Dr. Math Home || Search Dr. Math

### Running and Walking: Distance, Rate, Time

```
Date: 06/22/99 at 22:14:50
From: Steve Thune
Subject: Rate, distance and time

Fred and Frank are two fitness fanatics on a run from A to B. Fred
runs half the way and walks the other half. Frank runs half the time,
and walks the other half. The two run at the same speed and walk at
the same speed. Who finishes first? I think Frank, but I don't know
how to prove it.

Help!
```

```
Date: 06/23/99 at 14:21:46
From: Doctor Rick
Subject: Re: Rate, distance and time

Hi, Steve.

You're right. Here is an informal argument. Since Frank and Fred run
faster than they walk, Frank will go farther in the time that he runs
than in the equal time that he walks. Therefore he covers more
distance at a run than Fred does, since Fred covers equal distances
running and walking.

While both are walking or both are running, they will cover equal
distances. Therefore subtract this distance from the total distance.
The remaining distance is covered by Fred at a walk and by Frank at a
run, so Frank will finish first.

Here is a graphical representation. Time runs up the graph. Fred runs
(r) half the distance (covering more distance per unit of time), then
walks (w), reaching B at the time marked Fred. Frank runs until the
time marked "1/2 Frank," then walks until he reaches B at the time
marked Frank. Frank's time is less.

time
^
|
Fred +                                   w
|                                  w:
|                                 w :
|                                w  :
|                               w   :
|                              w    :
Frank+                             w     w
|                       Fred w     w:
|                           w     w :
|                          w     w  :
|                         w     w   :
|                        w     w    :
|                       w     w     :
|                      w     w Frank:
|                     w     w       :
1/2  +....................w.....r        :
Frank|                   w   r           :
|                  w r              :
|                 r                 :
|              r  :                 :
|           r     :                 :
|        r        :                 :
|     r           :                 :
|  r              :                 :
+-----------------+-----------------+--> distance
A            1/2 distance           B

You can formalize the argument by using algebra and the equation,
distance = speed (rate) * time. Assign variables:

speed while running = r
speed while walking = w
total distance      = d

Fred runs distance d/2; the time this takes is distance/speed =
d/(2r). He walks distance d/2; the time this takes is d/(2w). Thus
Fred's total time is

t_Fred = d/(2r) + d/(2w)
= d(r + w)/(2rw)

Frank runs for time t_Frank/2, covering
distance = speed * time = r*t_Frank/2.

He walks for time t_Frank/2, covering distance w*t_Frank/2.

The total distance is

d = r*t_Frank/2 + w*t_Frank/2
= (r + w)t_Frank/2

Solving for t_Frank,

t_Frank = 2d/(r + w)

Which is greater? Subtract t_Frank from t_Fred and see whether it is
positive.

t_Fred - t_Frank = d(r+w)/(2rw) - 2d/(r+w)
= d((r+w)^2 - 4rw)/(2rw(r+w))
= d(r^2 - 2rw + w^2)/(2rw(r+w))
= d(r-w)^2/(2rw(r+w))

Since d, (r-w)^2, r, w, and (r+w) are all positive, this difference is
positive. Therefore

t_Fred > t_Frank

Frank takes less time than Fred, and finishes first.

So now you have proof.

- Doctor Rick, The Math Forum
http://mathforum.org/dr.math/
```
Associated Topics:
Middle School Word Problems

Search the Dr. Math Library:

 Find items containing (put spaces between keywords):   Click only once for faster results: [ Choose "whole words" when searching for a word like age.] all keywords, in any order at least one, that exact phrase parts of words whole words

Submit your own question to Dr. Math
Math Forum Home || Math Library || Quick Reference || Math Forum Search