Associated Topics || Dr. Math Home || Search Dr. Math

### Noting Nothing: Braces around Zero vs. Empty Braces

```Date: 08/02/2010 at 09:36:22
From: Ien
Subject: difference between null set,phi and 0 in braces

I'm confused: what is the difference between the null set, the "phi," and
a zero enclosed in braces?

I don't know which is which.

```

```
Date: 08/02/2010 at 10:12:55
From: Doctor Ian
Subject: Re: difference between null set,phi and 0 in braces

Hi Ien,

The null set is a set that contains no elements. We can represent that
with empty brackets, like so, ...

{}

... or with a phi character. Those two representations are equivalent, and
either can be used in place of the other.

But a zero enclosed in braces, like this, ...

{0}

... is a set with one element -- namely, the number zero. It's similar to
the set {5}, except it has 0 as an element, instead of 5.

Note, too, that the set {phi} is a set that contains a set. For example,
we can have a set like this:

A = { {a,b}, {c,d,e}, {a,c} }

Here, A is a set that contains some other sets as elements. Since this
set can contain sets, it can contain the empty set, too:

A = { {a,b}, {c,d,e}, {a,c}, {} }

And we can remove elements from the set, one at a time:

A = { {c,d,e}, {a,c}, {} }

A = { {a,c}, {} }

A = { {} }

That last set has a single element. That element is the empty set. And
since {} and phi are two ways of saying the same thing, we can write
that as

A = { phi }

But this is very different than ...

B = phi = {}

... which is the empty set itself -- not a set containing the empty set.

Does this make sense?

- Doctor Ian, The Math Forum
http://mathforum.org/dr.math/

```

```
Date: 08/04/2010 at 05:51:36
From: Ien
Subject: Thank you (difference between null set,phi and 0 in braces )

Thanks for the answer. It helped me a lot.
```
Associated Topics:
High School Definitions
High School Sets

Search the Dr. Math Library:

 Find items containing (put spaces between keywords):   Click only once for faster results: [ Choose "whole words" when searching for a word like age.] all keywords, in any order at least one, that exact phrase parts of words whole words

Submit your own question to Dr. Math
Math Forum Home || Math Library || Quick Reference || Math Forum Search