Drexel dragonThe Math ForumDonate to the Math Forum

The Math Forum Internet Mathematics Library

Manifolds and Cell Complexes

_____________________________________
Library Home || Full Table of Contents || Suggest a Link || Library Help
_____________________________________

Visit this site: http://www.math.niu.edu/~rusin/known-math/index/57-XX.html

Author:Dave Rusin; The Mathematical Atlas
Description: A short article designed to provide an introduction to manifolds, spaces like the sphere which look locally like Euclidean space. In particular, these are the spaces in which we can discuss (locally) linear maps, and the spaces in which to discuss smoothness. They include familiar surfaces. Cell complexes are spaces made of pieces which are part of Euclidean space, generalizing polyhedra. These types of spaces admit very precise answers to questions about existence of maps and embeddings; they are particularly amenable to calculations in algebraic topology; they allow a careful distinction of various notions of equivalence. These are the most classic spaces on which groups of transformations act. This is also the setting for knot theory. History; applications and related fields and subfields; textbooks, reference works, and tutorials; software and tables; other web sites with this focus.

Levels: College
Languages: English
Resource Types: Articles
Math Topics: Manifolds/Cell Complexes

[Privacy Policy] [Terms of Use]

_____________________________________
Home || The Math Library || Quick Reference || Search || Help
_____________________________________

© 1994-2014 Drexel University. All rights reserved.
http://mathforum.org/
The Math Forum is a research and educational enterprise of the Goodwin College of Professional Studies.The Math Forum is a research and educational enterprise of the Drexel University School of Education.