Projection of a Torus
From Math Images
- A four-dimensional torus projected into three-dimensional space.
Projection of a 4-Dimensional Torus |
---|
Contents |
Basic Description
It is impossible to visualize an object in four-dimensions, since we have only ever lived in three-dimensional space. However, there are ways to capture features of the four-dimensional object in three-dimensional space.A useful analogy is a world map. We can capture the essence of the three-dimensional globe on a two-dimensional map, but only by using a projection, which translates a three-dimensional object onto a two-dimensional surface at the expense of distorting the object in some way.
A similar process is carried out to create this page's main image. An object in four-dimensional space, described further below, is projected into three-dimensions using two different projections.
A More Mathematical Explanation
The four-dimensional torus is defined parametrically by UNIQ2184f83f353b28d [...]
The four-dimensional torus is defined parametrically by . The first two coordinates of the parametrization give a circle in u-space, and the second two coordinates give a circle in v-space. The 4-D torus is thus the Cartesian Product of two circles.
A stereographic projection is used to map this object, which lives in four-dimensional space, into three-dimensional space, using a projection point of for the first object in this page's main image. This projection is centered above the object, projecting the symmetric torus into three-dimensional space. For the second object, the projection point is shifted to be closer to one part of the four-dimensional object than the other, creating an uneven object in three dimensions. This projection's unevenness is similar to the shadow of a symmetric object becoming asymmetric because of the light source's positioning.
Teaching Materials
- There are currently no teaching materials for this page. Add teaching materials.
About the Creator of this Image
Thomas F. Banchoff is a geometer, and a professor at Brown University since 1967.
References
http://www.math.brown.edu/~banchoff/art/PAC-9603/tour/torus/torus-math.html
Leave a message on the discussion page by clicking the 'discussion' tab at the top of this image page.