# Edit Edit an Image Page: Seven Bridges of Königsberg

To create an image page, simply complete the form below and then hit the 'Save Page' button at the bottom of the form. As you complete the form, remember that one of the main goals of the Math Images Project is to provide explanations of the images on our site at various levels, so that everyone can understand some of the math behind the images. Try to complete the form as fully as possible, but remember that other users will have the opportunity to add more information to your image pages in the future. Also, please note that by contributing to the Math Images Project, you agree to comply to the guidelines as stated in our general disclaimer.

As always, thank you for your contributions! --The Math Images Project

If you need help filling out this page, please consult our Help sections: Want to Contribute and Math Resources.

Note: * Indicates a required field.

Please note: When you are filling in the below explanations, you should feel free to use standard wikitext.

 Image Title*: Upload a Math Image The Seven Bridges of Königsberg is a historical problem that illustrates the foundations of [[Field:Graph Theory|Graph Theory]] The setting of the problem is the city of Konigsberg in Prussia. The city is divided by a river with two islands. The four parts of the city are linked by seven bridges. The problem is to find a path through the city and cross each bridge once and only once. You cannot cross the rivers except on bridges and must make full crossings of a bridge (you can't go halfway across, and then walk from the other end to the midway point.) ==Solution== {{hide|1=While we could literally test out every possible case by hand, this would be extremely tedious and prone to error but possible. Instead we will analyze the problem abstractly by eliminating all inessential details to get a better grip on the problem. Our first step is to remove the original image's distractions. [[Image:Simplifiedbridges3.PNG]] From here we can make the observation that the size of the islands, sides of the river, and even the river itself are irrelevant. In addition the distances between the land masses are immaterial, thus the lengths of the bridges are irrelevant. Keeping these observations in mind, we resize the landmasses to points, and the bridges to lines . [[Image:Bridges graph.JPG]] From here on we will use the word line instead of bridge, and vertex instead of landmasses. Now we make the key observation that, except for the starting and finishing landmass, the walker must exit each landmass exactly as many times as she enters it, and each entry and exit must be through a different line. In order for this to be possible there must be an even number of lines at every vertex with the exceptions of the starting and finishing vertexes of the walk. For those two vertexes, an odd number of vertexes is permitted since the walker only exits the starting vertex and only enters the final vertex. We can see this idea come into play in one failed solution. [[Image:Bridges_graph2.JPG]] The order of the path goes 3-1-2-3-4-2-1. At vertex 1, we can see that this solution fails because we get in but have no way out. Since vertex 1 is neither a starting point nor an end point (since we still have to go to vertex 4), and with an odd number of lines, scraps any possible solution that has vertex 1 as an intermediate vertex. Looking back at the previous figure, we can see that all four vertexes have an odd number of lines. The existence of a path that could reach all four landmasses is impossible because it would go through more than two vertexes with odd number of lines. Leonard Euler first solved this problem in 1735.}} ==Ideas for the Future== Make some sort of app that could allow the user to attempt to solve the problem manually. Hopefully they'll be able to trace the picture and the applet will highlight the bridge the user will not be able to go across. Algebra Analysis Calculus Dynamic Systems Fractals Geometry Graph Theory Number Theory Polyhedra Topology Other None Algebra Analysis Calculus Dynamic Systems Fractals Geometry Graph Theory Number Theory Polyhedra Topology Other None Algebra Analysis Calculus Dynamic Systems Fractals Geometry Graph Theory Number Theory Polyhedra Topology Other Yes, it is.