Transformation Matrix

From Math Images

Revision as of 14:50, 19 August 2009 by Mhershey1 (Talk | contribs)
Jump to: navigation, search

A transformation matrix is a special matrix that can describe transformations.

Transformation matrices can represent two dimensional transformations as well as three dimensional transformations. Each type of transformation is represented by certain elements in the matrix.

Examples in 2D Graphics

In 2D graphics Linear transformations can be represented by 2x2 matrices. Most common transformations such as rotation, scaling, shearing, and reflection are linear transformations and can be represented in the 2x2 matrix. Other affine transformations can be represented in a 3x3 matrix.


For rotation by an angle θ clockwise about the origin, the functional form is x' = xcosθ + ysinθ and y' = − xsinθ + ycosθ. Written in matrix form, this becomes:

\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta &  \sin\theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}

Similarly, for a rotation counterclockwise about the origin, the functional form is x' = x \cos \theta - y \sin \theta and y' =  x \sin \theta + y \cos \theta and the matrix form is:

\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta &  -\sin\theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
Personal tools