User:Dpatton1

From Math Images

Revision as of 11:39, 15 July 2013 by Dpatton1 (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
I also construct images in Photshop, Matlab, and GSP.
I also construct images in Photshop, Matlab, and GSP.
Animations, too.
Animations, too.


My name is Diana Patton, and I'm a recent Swarthmore graduate working with Math Images. I've been on the project for three years, and am currently involved in researching applications of MI in high school classrooms and in providing feedback and support for the folks writing pages this summer.

As a math teacher, I'm interested in MI both from the mathematical angle and from a view toward its potential for fostering interest and depth of learning. Existing pages are a good resource for pulling in students who usually struggle with either understanding or engaging with math, and the process of building pages can help students interact with math on a deeper level and gain a sense of themselves as mathematicians and of ownership of their work.



Questions or things to say? Post them here:
\Rightarrow



My Pages:
  • Live:
Markus-Lyapunov Fractals
  • In Progress:
Logistic Bifurcation
String Art Calculus


Some math-gibberish to show syntax:


<math>s\in S\cup\mathcal{G},S\subset\mathbb{R}\Leftrightarrow s\in\{f(s)|f=\gamma\circ\varphi:\mathbb{C}\rightarrow\mathfrak{G}\}</math>
Gives:

s\in S\cup\mathcal{G},S\subset\mathbb{R}\Leftrightarrow s\in\{f(s)|f=\gamma\circ\varphi:\mathbb{C}\rightarrow\mathfrak{G}\}


<math>f=\sqrt{\frac{p}{\mu}}\left[\sin L\frac{T}{m}\alpha_r+\frac{(1+w)\cos L+f}{w}\frac{T}{m}\alpha_t\right]</math>
Gives:

f=\sqrt{\frac{p}{\mu}}\left[\sin L\frac{T}{m}\alpha_r+\frac{(1+w)\cos L+f}{w}\frac{T}{m}\alpha_t\right]


<math>M_{\alpha\beta}=\left[\begin{array}{cccc}q&xyz&29&\overline{-\beta}\\n&m&\overrightarrow{v}&\sum_{i=1}^\infty i^x\\\vdots&\cdots&\ddots&\ddots\end{array}\right]</math>
Gives:

M_{\alpha\beta}=\left[\begin{array}{cccc}q&xyz&29&\overline{-\beta}\\n&m&\overrightarrow{v}&\sum_{i=1}^\infty i^x\\\vdots&\cdots&\ddots&\ddots\end{array}\right]


<math>\exists\int_a^bxdx\text{s.t.}\frac{\partial f}{\partial y} x=5\forall x</math>
Gives:

\exists\int_a^bxdx\text{s.t.}\frac{\partial f}{\partial y} x=5\forall x


<math>\begin{array}{ccccccc}&&&\left(\begin{array}{c}0\\0\end{array}\right)&&&\\&&\left(\begin{array}{c}1\\0\end{array}\right)&&\left(\begin{array}{c}1\\1\end{array}\right)&&\\&\left(\begin{array}{c}2\\0\end{array}\right)&&\left(\begin{array}{c}2\\1\end{array}\right)&&\left(\begin{array}{c}2\\2\end{array}\right)&\\\left(\begin{array}{c}3\\0\end{array}\right)&&\left(\begin{array}{c}3\\1\end{array}\right)&&\left(\begin{array}{c}3\\2\end{array}\right)&&\left(\begin{array}{c}3\\3\end{array}\right)\\&\vdots&&\vdots&&\vdots&\end{array}</math>
Gives:

\begin{array}{ccccccc}&&&\left(\begin{array}{c}0\\0\end{array}\right)&&&\\&&\left(\begin{array}{c}1\\0\end{array}\right)&&\left(\begin{array}{c}1\\1\end{array}\right)&&\\&\left(\begin{array}{c}2\\0\end{array}\right)&&\left(\begin{array}{c}2\\1\end{array}\right)&&\left(\begin{array}{c}2\\2\end{array}\right)&\\\left(\begin{array}{c}3\\0\end{array}\right)&&\left(\begin{array}{c}3\\1\end{array}\right)&&\left(\begin{array}{c}3\\2\end{array}\right)&&\left(\begin{array}{c}3\\3\end{array}\right)\\&\vdots&&\vdots&&\vdots&\end{array}

Personal tools