Exploring Discrete Mathematics Summary
Monday  Friday, July 7  11, 2008
Day 1  Monday, 07 July 2008
We started by generating a table to represent the sample space for finding the sum
when tossing two normal 6sided dice and then organizing the results by using a
frequency table. We were then challenged to find another set of two 6sided dice
that would produce the same results as the sum and frequencies when tossing
the "normal" dice  under the conditions that each face of a die must be a positive
integer. After much discussion and generation of ideas, we were able to find at
least one other pair of 6sided dice that would accomplish the desired outcome.
Day 2  Tuesday, 08 July 2008
Our leader, Brian, introduced the idea of generating functions to the group and led
a discussion on their relevance to finding the solution to the problem that was set
on Day 1. We used a generating function and polynomial algebra (expanding,
factoring, and evaluating) to produce the same result that we had obtained on Day
1. Further, we were able to use this same approach to prove the uniqueness of our
solution. We then considered some followup questions such as using dice with
different number of sides and using more than two dice. We ended today's session
with a neat application of generating functions to the Fibonacci sequence. Our
homework was to read through previous years' Discrete Math Group projects as well
as some articles on alternate dice.
Day 4  Thursday, July 10, 2008
We solved the problem of coming up with an alternate pair of dice, using
tetrahedral dice, by using its associated generating function. We then
investigated further methods for obtaining the same results as tossing tetrahedral
dice (e.g. using a coin and an octahedral die). It was left as an exercise to show
that a particular 2sided die and 18sided die produce an equivalent sample space
to the normal two 6sided dice. Further followup questions were posed. We then
discussed cyclotomic polynomials as possible math topic that we can include in our
project. The session ended with some exposure to Catalan numbers found in three
examples: polygon dissections, subdiagonal restricted lattice paths, and rooted
binary trees.
Day 5  Friday, July 11, 2008
Brian presented a beautiful tie from Catalan numbers to binomial coefficients.
We then started working in two different groups.
Bree, Allen, Andrew, and Ted started looking at the combinatronics project from
2005 on Catalan numbers. They delegated different parts of the project to each
other and spent time revising it by addressing editor notes provided from the
refereed process.
Vicki, Brian, and Armando started developing the combinatronics project on
alternate dice using generating functions from this year's topic.
Back to Journal Index
PCMI@MathForum Home  IAS/PCMI Home

© 2001  2013 Park City Mathematics Institute
IAS/Park City Mathematics Institute is an outreach program of the School of Mathematics at the Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
Send questions or comments to: Suzanne Alejandre and Jim King

With program support provided by Math for America
This material is based upon work supported by the National Science Foundation under Grant No. 0314808.
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.
