Hosted by The Math Forum

Problem of the Week 1085

Rook Tour

_____________________________________________
MacPoW Home ||  Forum PoWs ||  Teachers' Place ||  Student Center ||  Search MacPoW
_____________________________________________

Consider an 8×8 chessboard and a piece, R, that starts at the lowest left square and takes a tour of the board, visiting each square, never visiting a square twice, and ending up at the starting square. Each move goes from a square to an adjacent square in either the horizontal or vertical direction. Thus the tour requires 64 moves.

Is it possible that in such a tour, R takes the same number of horizontal moves as vertical ones?

Source: A review of "International Mathematical Tournament of Towns 1997-2002," by Clint Lee in Crux Mathematicorum, May 2007.

© Copyright 2007 Stan Wagon. Reproduced with permission.

[Privacy Policy] [Terms of Use]

_____________________________________
Home || The Math Library || Quick Reference || Search || Help 
_____________________________________

© 1994-2014 Drexel University. All rights reserved.
http://mathforum.org/
The Math Forum is a research and educational enterprise of the Drexel University School of Education.The Math Forum is a research and educational enterprise of the Drexel University School of Education.


6 November 2007