Using the PoWs: Introduction

What are the Problems of the Week and Why Should I Use Them?

The Math Forum’s Problems of the Week (PoWs) were started in 1993 to give geometry students an opportunity to use the newly-available Internet and its electronic mail to practice written communication about their mathematical problem solving and to support teachers implementing new standards. In the years since, problems in other areas of math have been added and teachers have used the problems in many different ways, but our goals have remained the same: to encourage students to apply mathematical knowledge, develop problem solving strategies, and effectively articulate and reflect on their own mathematical thinking.

At its most basic level, a “Problem of the Week” is an open-response math problem that can be printed out and handed to the students. But there’s a lot more available in the online environment!

For teachers, the PoWs offer:

Teacher Support Pages: Through these documents we offer starting points for the key concepts in the problem and give links to similar PoWs from our Library, helpful questions and answers from our Ask Dr. Math archives, tips on teaching the content from our Teacher2Teacher archive, and applets from our Math Tools library. All of the problems we’ve written in the last five years and a few of the problems before that include a Teacher Support Page.

Enhanced Problem Packets: These guides include the problem text and the answer that we provide to students after they submit, an introduction to the problem, the solution that we write for our mentors, a problem-specific scoring rubric, tips about how to introduce the problem to your students, ideas about how to move students forward in their thinking and/or writing, and a list of the common mistakes. This year, about half of the problems in each service are from our Library, which enables the packet to also include sample student solutions that were submitted when we originally used the problem. These solutions are accompanied by brief comments about each one and, usually, a score from one dimension of our rubric (for example, we might give the Strategy score for each of the solutions so that teachers can see examples of the progression from Novice to Apprentice to Practitioner to Expert). These PDF files accompany every problem used as a Current PoW in one of our four services during the year.

Past Solutions: Over 900 problems in our Library are accompanied by highlighted student solutions and by commentary on those solutions, the different methods students used, and the common mistakes we saw.

Teacher Office: Teachers can view their students’ work online and see whether or not students viewed the answer check, revised their work, or left a comment. Teachers can also choose to mentor their students’ work using our scoring rubric and online Message Center.

Mentoring: Many students who submit online will have an opportunity to be mentored by pre-service teachers learning to facilitate mathematical thinking and by trained volunteers and Math Forum staff. Mentoring enhances the motivation for writing, offers individual support, brings outside resources into the classroom, and provides an opportunity for professional collaboration around student work.

For students, the PoWs offer:

The Answer Check: After students submit their solution online, they can look at a partial answer that we provide (we don’t tell them how we got that answer, just what it is). Along with that, we provide hints and questions for students whose answer doesn’t match ours, as well as ideas to consider even when it does match.

Revision: Students can revise their work, either after viewing our answer check, or at any time after that, for up to 17 days (it’s unlimited in our Library problems). Studies have shown that revising solutions significantly improves learning.

I was observing students work out a problem together. When they finally “got” it, one of the students exclaimed, “We are so smart!” Isn’t that what we are striving for? Not “the teacher is so smart,” not “they are so smart,” but “we are.” In that statement, I heard both confidence and community.

—Cynthia Lanius, former high school teacher

I liked being able to do it and revise it. The hints were really helpful. You don’t want to look at the answer before you try it yourself. But after you try it, you look at the answer and see if the hints will help. You don’t read all of them, because they won’t all help, but you find the ones that do. Then you might be able to figure it out.

—Tahira, age 14
Why Should You Use PoWs in Your Classroom?

One can look at the Problems of the Week as merely another source of good problems for students to work on to supplement the curriculum. However, there are some specific issues in math classrooms that have shaped the design and use of the PoWs by teachers over the years, enabling them to play a significant role in students’ development as mathematical thinkers.

It’s common for students and many adults to say they were “never any good at math”. It’s possible that math rarely made sense to them. They learned to discount their own thinking and instead focused on and tried to remember the ideas and techniques that someone else had already figured out. Math didn’t come “naturally” to them, because it was never about their ideas. It was about finding a way to get the right answer as quickly as possible, to be over and done with it.

The PoWs’ unique combination of an asynchronous online environment, a two-week time frame (in the Current PoWs), non-routine, supplemental problems, and the expectation of written explanations makes for certain opportunities for students. The more obvious are:

- to be challenged
- to apply concepts
- to use higher order thinking skills

The less obvious but equally important include:

- to use multiple approaches: Connect to your own way of thinking. Build from your ideas and experience.
- to be persistent: Develop confidence in the ability to do problem-solving, to come up with ideas when you didn’t think you could.
- to develop mathematical habits of mind: Use an understanding of number to test cases, systematically explore for patterns, generalize mathematical relationships, transform to recognizable representations, connect to simpler problems, efficiently name and organize relationships for manipulation, prove (explain), work with multiple representations, etc.
- to appreciate the value of writing for learning as well as for communicating. Move from showing your work to giving mathematical explanations to making mathematical connections and generalizing results.

The PoWs and the NCTM Process Standards

PoWs are an effective vehicle for learning and reinforcing mathematical concepts and skills. The problems address the Process Standards proposed by the NCTM and promoted by many states in their mathematics standards.

Problem Solving
PoWs support the general process of problem solving, which goes beyond the math classroom. Students analyze the given information and apply knowledge and skills in different ways.

Reasoning and Proof
Justifying one's thinking and procedures, both orally and in writing, is fundamental to mathematics. PoWs provide the opportunity for students to develop this habit of mind and learn that mathematics makes sense.

Communication
Writing is an important component of PoWs. The process of putting thoughts into writing serves to clarify and organize the student’s mathematical thinking.

Connections
The variety of topics used in the PoWs helps students make connections with other mathematical ideas and with contexts outside of mathematics.

Solving a broad range of PoWs helps students identify different problem situations and choose appropriate strategies for solving them.

Representation
PoWs invite students to use a variety of forms of representation. Students often use manipulatives, tables, graphs and diagrams in the process of solving the problem as well as in communicating their results. These representations can help some students move from arithmetic calculations toward algebraic generalizations as a natural next step in their mathematical growth.