2002 Mathematics Game

This Web page is intended to record solutions submitted by students in grades three through twelve. Submissions will be posted starting February 1, 2002.

Rules: use the digits in the year 2002 and the operations of +, -, x, ÷, sqrt (square root), ^ (raise to a power), and ! (factorial), along with grouping symbols, to write expressions for the counting numbers 1 through 100. Please read and follow the rules carefully.

Teachers may print out worksheets for students to record their findings, or print sheets of manipulatives for students to use.

STUDENT SOLUTIONS 61 to 70

  Solution Name Grade School
61        
  sqrt((((2+0!)!)!)/.2)+0! Jody A. Cohen 10 North Springs High School
  (sqrt (((2 +0!)!)!)/sqrt(.2))+0!

((0!/.2)!/2)+0!

Lisa Gardner 6 Lincoln Middle School
  (0!/.2)!/2+0! Elmer Newsome 11 Hancock Central
  sqrt((((2+0!)!)!)/.2)+0! Misam Taherbhai 10 North Springs High School
  sqrt((((2+0!)!)!)/.2)+0! Emily Seifert 12 North Springs High School
  sqrt[(((2+0!)!)!)/.2]+0! Jennifer Robbins & Jennifer Sichel 12 North Springs High School
         
62 No solutions have been submitted for this number.
         
63        
  2^((2+0!)!)-0! Hamid Reza Biazar 11 Tehran High School
  2^((2+0!)!) - 0! Hunter Brooks 12 Durham Academy
  (2^((0!+2)!))-0! Lisa Gardner 6 Lincoln Middle School
  2^(0!+2!)!-0! Lilla Gazsó 9 SZTE Ságvári Endre Gyakorló Gimnázium
  (2^((2+0!)!))-0! Sándor Kazi 9 SZTE Ságvári Endre Gyakorló Gimnázium
  2^((2!+0!)!)-0!s Jimmy Keown 9 West Junior High School
  2^(2+0!)!-0! Andrea Marinescu 6 Mount Olive Middle School
  2^((2+0!)!)-0! Oszkár Mihály 9 SZTE Ságvári Endre Gyakorló Gimnázium
  2^(2+0!)!-0! Amy Patel 10 North Springs High School
  2^(2+0!)!-0! Tiffany Petties-Smith 10 North Springs High School
  (2^(2+0!)!)-0! Pritika P. 6 Parker Middle School
  (2^((2+0!)!))-0! Emily Seifert 12 North Springs High School
  2^((2+0!)!)-0! Misam Taherbhai 10 North Springs High School
  2 ^ ((2 + 0!)!) - 0! George Vulov 10 North Springs High School
  2^((2+0!)!)-0! Jennifer Robbins & Jennifer Sichel 12 North Springs High School
         
64        
  2^((2+0!+0)!) Kocsis Andras 9 SZTE Ságvári Endre Gyakorló Gimnázium
  (2^((2+0!)!))+0 Hamid Reza Biazar 11 Tehran High School
  2^((2+0!)!)+0 Hunter Brooks 12 Durham Academy
  2^((0!+0+2)!) Lisa Gardner 6 Lincoln Middle School
  2^(0!+2!)!+0 Lilla Gazsó 9 SZTE Ságvári Endre Gyakorló Gimnázium
  (2^((2+0!)!))+0 Sándor Kazi 9 SZTE Ságvári Endre Gyakorló Gimnázium
  2^((2!+0!)!)+0 Jimmy Keown 9 West Junior High School
  2^(2+0!)!+0 Braxton Lake 12 North Springs High School
  2^(2+0!)!+0 Andrea Marinescu 6 Mount Olive Middle School
  2^((2+0!)!)+0 Oszkár Mihály 9 SZTE Ságvári Endre Gyakorló Gimnázium
  2^(2+0!)!+0 Amy Patel 10 North Springs High School
  2^(2+0!)!+0 Tiffany Petties-Smith 10 North Springs High School
  (2^((2+0!)!))+0 Mark Schaum 9 West Junior High School
  (2^((2+0!)!))+0 Emily Seifert 12 North Springs High School
  2 ^ ((2 + 0!)!) - 0 George Vulov 10 North Springs High School
  2^((2+0!)!)-0 Jennifer Robbins & Jennifer Sichel 12 North Springs High School
         
65        
  2^((2+0!)!)+0! Kocsis Andras 9 SZTE Ságvári Endre Gyakorló Gimnázium
  (2^((2+0!)!)+0! Hamid Reza Biazar 11 Tehran High School
  2^((2+0!)!)+0! Hunter Brooks 12 Durham Academy
  (2^((0!+2)!))+0! Lisa Gardner 6 Lincoln Middle School
  2^(0!+2)!+0! Lilla Gazsó 9 SZTE Ságvári Endre Gyakorló Gimnázium
  (2^((2+0!)!))+0! Sándor Kazi 9 SZTE Ságvári Endre Gyakorló Gimnázium
  2^((2!+0!)!)+0! Jimmy Keown 9 West Junior High School
  2^(2+0!)!+0! Braxton Lake 12 North Springs High School
  2^((2+0!)!)+0! Oszkár Mihály 9 SZTE Ságvári Endre Gyakorló Gimnázium
  2^(2+0!)!+0! Amy Patel 10 North Springs High School
  2^(2+0!)!+0! Tiffany Petties-Smith 10 North Springs High School
  (2^((2+0!)!))+0! Emily Seifert 12 North Springs High School
  2^((2+0!)!)+0! Misam Taherbhai 10 North Springs High School
  2 ^ ((2 + 0!)!) + 0! George Vulov 10 North Springs High School
  2^((2+0!)!)+0! Jennifer Robbins & Jennifer Sichel 12 North Springs High School
         
66 No solutions have been submitted for this number.
         
67 No solutions have been submitted for this number.
         
68 No solutions have been submitted for this number.
         
69 No solutions have been submitted for this number.
         
70 No solutions have been submitted for this number.
         

Solutions 1 to 10 Solutions 11 to 20 Solutions 21 to 30
Solutions 31 to 40 Solutions 41 to 50 Solutions 51 to 60
Solutions 71 to 80 Solutions 81 to 90 Solutions 91 to 100
Please notify judyann@ptdprolog.net of any errors.