Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: FLT Discussion: Simplifying
Replies: 65   Last Post: Mar 17, 2001 11:59 PM

 Messages: [ Previous | Next ]
 hale@mailhost.tcs.tulane.edu Posts: 229 Registered: 12/8/04
Re: FLT Discussion: Simplifying
Posted: Jan 21, 2001 4:00 AM

In article <94d0um\$62s\$1@nnrp1.deja.com>,
jstevh@my-deja.com wrote:
> In article <948l1f\$n0g\$1@nnrp1.deja.com>,
> hale@mailhost.tcs.tulane.edu wrote:

> > In article <947vks\$5dt\$1@nnrp1.deja.com>,
> > jstevh@my-deja.com wrote:

> > > You say, I'm forced to act like I'm outside of integers at the
> start,
> > > but what if there were an integer solution to FLT?
> > >
> > > Then wouldn't your objection fall away?

> >
> > No.
> >
> > One proof of Fermat's result that primes congruent to 1 modulo 4
> > can be written as the sum of the squares of two integers uses
> > complex numbers (in particular, Gaussian integers). You are
> > proving a result about integers, there are integer solutions for
> > the result, yet you go outside to complex numbers (and you have
> > to specify that you are going out to complex numbers so that
> > you can use their properties).
> >

>
> Nope. Turns out that it depends on what I call 'v' in the proof.

I think you misunderstood what I meant by "One proof of Fermat's
result that ...". I am not referring to Fermat's last theorem or
to your proof of Fermat's last theorem.

I am referring to the result of Fermat that says 5 = 1^2 + 2^2,
13 = 2^2 + 3^2, 17 = 1^2 + 4^2, 29 = 2^2 + 5^2, etc but the
primes 3, 7, 11, 19, 23, etc cannot be expressed as a sum of
two squares.

--
Bill Hale

Sent via Deja.com
http://www.deja.com/

Date Subject Author
1/15/01 jstevh@my-deja.com
1/15/01 Dik T. Winter
1/16/01 Charles H. Giffen
1/16/01 jstevh@my-deja.com
1/16/01 Randy Poe
1/18/01 jstevh@my-deja.com
1/18/01 Michael Hochster
1/18/01 Peter Johnston
1/18/01 Randy Poe
1/18/01 Doug Norris
1/16/01 Doug Norris
1/16/01 Randy Poe
1/16/01 Dik T. Winter
1/18/01 jstevh@my-deja.com
1/19/01 Dik T. Winter
1/19/01 Randy Poe
1/20/01 jstevh@my-deja.com
1/20/01 oooF
1/21/01 hale@mailhost.tcs.tulane.edu
1/21/01 Peter Percival
1/21/01 Randy Poe
1/26/01 Franz Fritsche
1/19/01 gus gassmann
1/20/01 jstevh@my-deja.com
1/20/01 Doug Norris
1/26/01 Franz Fritsche
1/16/01 hale@mailhost.tcs.tulane.edu
1/16/01 Randy Poe
1/17/01 hale@mailhost.tcs.tulane.edu
1/18/01 jstevh@my-deja.com
1/19/01 hale@mailhost.tcs.tulane.edu
1/20/01 jstevh@my-deja.com
1/21/01 hale@mailhost.tcs.tulane.edu
1/18/01 Peter Percival
1/19/01 hale@mailhost.tcs.tulane.edu
3/17/01 Ross A. Finlayson
1/16/01 hale@mailhost.tcs.tulane.edu
1/18/01 jstevh@my-deja.com
1/19/01 hale@mailhost.tcs.tulane.edu
1/29/01 jstevh@my-deja.com
1/19/01 Dik T. Winter
1/21/01 Dennis Eriksson
1/15/01 Michael Hochster
1/16/01 jstevh@my-deja.com
1/16/01 Michael Hochster
1/18/01 jstevh@my-deja.com
1/18/01 Peter Percival
1/18/01 Randy Poe
1/19/01 oooF
1/21/01 Dik T. Winter
1/21/01 oooF
1/18/01 Edward Carter
1/19/01 W. Dale Hall
1/19/01 Michael Hochster
1/16/01 Randy Poe
1/16/01 Randy Poe
1/17/01 W. Dale Hall
1/17/01 W. Dale Hall
1/19/01 oooF
1/16/01 Charles H. Giffen
1/16/01 David Bernier
1/16/01 jstevh@my-deja.com
1/18/01 Arthur
1/30/01 plofap@my-deja.com
1/30/01 plofap@my-deja.com
1/30/01 plofap@my-deja.com