Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: analytic function problem
Replies: 76   Last Post: Oct 28, 1996 11:08 AM

 Search Thread: Advanced Search

 Messages: [ Previous | Next ]
 Tleko Posts: 341 Registered: 12/12/04
Re: analytic function problem
Posted: Oct 11, 1996 6:03 AM
 Plain Text Reply

In article <52ro6p\$mcm@aplinfo.jhuapl.edu> Hunter James
<hunter@aplcomm.jhuapl.edu> wrote:

: I see what you mean. And with that observation, we have the jingo:
:
: y is an analytic function of both z and z*, if, and only if,
: it is a "function" of neither.
:
:>tleko wrote:
:> Indeed we have z=z* .
:>
:> We write z=r.exp(i.@)
:>
:> z*=r.exp(i.(-@))
:>
:> to obtain z-z*=r.((cos@+i.sin@)-(cos(-@)+i.sin(-@-pi))) = 0 .
:>) In article <199610070856.KAA0189@maloche.neuroinformatik.
:>) ruhr-uni-bochum> David Kastrup wrote:
:>) This above all proves that you are not wanting to make any sensible
:>) claims but are just out to "prove" nonsense by mixing your geometric
:>) functions up. The "-pi" in the above is absolute nonsense and not
:>) justifiable at all. If you cross out that junk, you arrive at
:>) z-z* = 2 r i sin@
:>)
:>) Which is, pretty obvious for all bu the hopefully dense, the 2i Im(z)
:>) which you could have arrived at without employing polar coordinates
:>)@ In article <53bfc|\$s1@news.tuwien.ac.at> Andreas Leitgeb wrote:
:>)@ Tleko (tleko@aol.com) wrote:
:>)@> Indeed we have z=z* .
:>)@nope
:>)@> We write z=r.exp(i.@)
:>)@> z*=r.exp(i.(-@))
:>)@yup
:>)@> to obtain z-z*=r.((cos@+i.sin@)-(cos(-@)+i.sin(-@-pi))) = 0 .
:>)@where does _this_ come from ?? ---------------------^^^
:>)@how about:
:>)@z-z*=r.((cos@+i.sin@)-(cos(-@)+i.sin(-@))) =
:>)@ r. (cos@+i.sin@)-(cos(@) -i.sin(@))) =
:>)@ r. ( i.sin@ - ( - i.sin@ ) = 2.r.i.sin@
:>)@ which gets nearer to being correct ... ;-)
:>)@@In the article <53e100\$60r@nuke.csu.net> Ilias Kastanas wrote:
:>)@@Is it possible not to realize this can only hold for y=o, i.e. for
real
:>)@@z,
:>)@@and not in general?

Yes it is. 2.r.i.sin@ = 2.i.y is valid for any real y not
only for y=0.

Date Subject Author
9/30/96 Christopher
9/30/96 David Ullrich
9/30/96 Hunter James D. STA x4202
10/1/96 David Ullrich
9/30/96 ilias kastanas 08-14-90
9/30/96 Dik T. Winter
10/1/96 David Kastrup
10/1/96 Hunter James D. STA x4202
9/30/96 Zdislav V. Kovarik
9/30/96 Anne DeCampo
10/2/96 Christopher
10/1/96 Tleko
10/2/96 David Kastrup
10/3/96 Dik T. Winter
10/3/96 Tleko
10/3/96 David Ullrich
10/3/96 Tleko
10/3/96 Dik T. Winter
10/3/96 Tleko
10/3/96 Zdislav V. Kovarik
10/5/96 Tleko
10/5/96 Dik T. Winter
10/6/96 Tleko
10/6/96 David Ullrich
10/7/96 ilias kastanas 08-14-90
10/7/96 Tleko
10/7/96 Andreas Leitgeb
10/7/96 Andreas Leitgeb
10/7/96 ilias kastanas 08-14-90
10/9/96 Simon Read
10/8/96 Tleko
10/8/96 Zdislav V. Kovarik
10/8/96 ilias kastanas 08-14-90
10/9/96 David Ullrich
10/8/96 Jim Hunter
10/8/96 Tleko
10/9/96 David Kastrup
10/9/96 Ilias Kastanas
10/11/96 Tleko
10/12/96 ilias kastanas 08-14-90
10/12/96 Dik T. Winter
10/11/96 Tleko
10/11/96 Tleko
10/11/96 Tleko
10/11/96 Tleko
10/11/96 Tleko
10/12/96 Tleko
10/12/96 Sue Franklin
10/13/96 Ilias Kastanas
10/15/96 Simon Read
10/13/96 Tleko
10/13/96 Tleko
10/13/96 ilias kastanas 08-14-90
10/14/96 Dik T. Winter
10/13/96 Tleko
10/13/96 Tleko
10/14/96 ilias kastanas 08-14-90
10/14/96 Dik T. Winter
10/15/96 Tleko
10/15/96 David Kastrup
10/15/96 Ilias Kastanas
10/16/96 Tleko
10/16/96 Dik T. Winter
10/17/96 Raymond DeCampo
10/18/96 Ariel Scolnicov
10/19/96 Tleko
10/19/96 Dik T. Winter
10/20/96 Terry Moore
10/21/96 Dik T. Winter
10/22/96 Ariel Scolnicov
10/20/96 Tleko
10/21/96 Terry Moore
10/22/96 David Kastrup
10/23/96 Tleko
10/24/96 Gunter Bengel
10/28/96 David Kastrup
10/28/96 David Ullrich

© The Math Forum at NCTM 1994-2018. All Rights Reserved.