The Math Forum

Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Math Forum » Discussions » sci.math.* » sci.math

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Curvature in Cartesian Plane
Replies: 6   Last Post: Nov 15, 2012 8:53 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]

Posts: 6
Registered: 11/10/12
Re: Curvature in Cartesian Plane
Posted: Nov 14, 2012 1:41 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On Wed, 14 Nov 2012 09:23:06 +1000, Brad Cooper wrote:

> I expect that this is true...
> We have three points on a Cartesian x-y plane, and the circle that passes through these three points has a constant curvature of k.
> If we have a doubly differentiable curve in the x-y plane that passes through these points, is there always some point on the curve which has curvature k?
> I am finding it tough to prove this. Any help appreciated.
> Cheers,
> Brad

If you're having difficulty proving something, it may be worth considering
the possibility that it's false.

In this case, if I imagine a V-shaped pair of line segments joining the
three points, then rounding the corner of the V so it's
twice-differentiable (but widening the V slightly so the curve still goes
through the middle point), it's clear that the curvature goes from 0 up
through k to a higher value at the middle point, then down through k to 0

However, if I then imagine superimposing a high-frequency "coiling" on this
curve, like a telephone cord projected down to 2D, arranging that it still
pass through all three points, it seems it should be possible to keep the
curvature everywhere higher than some lower bound B > k. (The curve will
now self-intersect.)

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© The Math Forum at NCTM 1994-2018. All Rights Reserved.