Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: fom - 03 - connectivity algebra
Replies: 4   Last Post: Dec 7, 2012 5:30 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Graham Cooper

Posts: 4,227
Registered: 5/20/10
Re: fom - 03 - connectivity algebra
Posted: Dec 7, 2012 5:14 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On Dec 7, 8:24 pm, fom <fomJ...@nyms.net> wrote:
> >>
> >> NOR (NOR,NOR) = OR

>
> ((p NOR q) NOR (p NOR q)
>
>    T..F..T...T...T..F..T
>    T..F..F...T...T..F..F
>    F..T..F...F...F..T..F
>    F..F..T...T...F..F..T
>
>   p  q | p OR q
> ------|--------
>   T  T |   T
>   T  F |   T
>   F  F |   F
>   F  T |   T
>




OK, here are the 16 predicates..



p(n,A,B,_)

p(1,0,0,0).
p(1,0,1,0).
p(1,1,0,0).
p(1,1,1,0).

p(2,0,0,0). AND
p(2,0,1,0).
p(2,1,0,0).
p(2,1,1,1).

p(3,0,0,0).
p(3,0,1,0).
p(3,1,0,1).
p(3,1,1,0).

p(4,0,0,0).
p(4,0,1,0).
p(4,1,0,1).
p(4,1,1,1).

p(5,0,0,0).
p(5,0,1,1).
p(5,1,0,0).
p(5,1,1,0).

p(6,0,0,0).
p(6,0,1,1).
p(6,1,0,0).
p(6,1,1,1).

p(7,0,0,0).
p(7,0,1,1).
p(7,1,0,1).
p(7,1,1,0).

p(8,0,0,0). OR
p(8,0,1,1).
p(8,1,0,1).
p(8,1,1,1).

p(9,0,0,1).
p(9,0,1,0).
p(9,1,0,0).
p(9,1,1,0).

p(10,0,0,1).
p(10,0,1,0).
p(10,1,0,0).
p(10,1,1,1).

p(11,0,0,1).
p(11,0,1,0).
p(11,1,0,1).
p(11,1,1,0).

p(12,0,0,1).
p(12,0,1,0).
p(12,1,0,1).
p(12,1,1,1).

p(13,0,0,1).
p(13,0,1,1).
p(13,1,0,0).
p(13,1,1,0).

p(14,0,0,1).
p(14,0,1,1).
p(14,1,0,0).
p(14,1,1,1).

p(15,0,0,1).
p(15,0,1,1).
p(15,1,0,1).
p(15,1,1,0).

p(16,0,0,1).
p(16,0,1,1).
p(16,1,0,1).
p(16,1,1,1).



I might run a program

pn(pm,ps)

on all 4 inputs and check the result
against the 4 inputs, if there is a duplicate
it can be reduced.

e.g.

and(if(A,B),if(B,C))

the result is the same as

if(A,C)

so I could detect B is eliminated
and a reduction exists.


Herc



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.