Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Topic: fom - 01 - preface
Replies: 35   Last Post: Dec 16, 2012 12:20 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
mueckenh@rz.fh-augsburg.de

Posts: 15,737
Registered: 1/29/05
Re: fom - 01 - preface
Posted: Dec 9, 2012 1:30 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On 9 Dez., 17:24, fom <fomJ...@nyms.net> wrote:
> On 12/9/2012 3:20 AM, WM wrote:
>

> > On 9 Dez., 08:21, fom <fomJ...@nyms.net> wrote:
>
> > A hint: If you want to be read, write shorter.
>
> >> In a footnote of his paper describing
> >> the constructible universe, Goedel makes
> >> it clear that the construction presupposes
> >> that every domain element can be named.

>
> > For every set that, at least in principle, shall be well-ordered, this
> > nameability is crucial.
> >

> Indeed
>
> So, why is there no global axiom of choice?


As far as I am informed, *the* axiom of choice is global. There is no
exception. Zermelo proved: Every set can be well-ordered.
>
> The constructible universe can be well-ordered.


Without axiom, because for countable sets the axiom is not required.
>
> But, when people say they have obtained some models
> by forcing, that is just to say that an assumption
> of partiality demonstrated an element outside the
> ground model.  Circular.
>
> If those models cannot be put in correspondence
> with ORD should they not be considered meaningless?
>
> It is the same question as that of accepting a
> completed infinity, although it is now in the
> realm of the transfinite.  A "model" is a possible
> universe, and therby is a completion of sorts.
> But, nameability of elements is relevant.


That is my opinion too. But we know (and noone disputes it, as far as
I know) that the set of all names is countable.

Regards, WM




Date Subject Author
12/7/12
Read fom - 01 - preface
fom
12/8/12
Read Re: fom - 01 - preface
Zaljohar@gmail.com
12/8/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/8/12
Read Re: fom - 01 - preface
fom
12/8/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/8/12
Read Re: fom - 01 - preface
Virgil
12/9/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/9/12
Read Re: fom - 01 - preface
Virgil
12/8/12
Read Re: fom - 01 - preface
fom
12/8/12
Read Re: fom - 01 - preface
ross.finlayson@gmail.com
12/9/12
Read Re: fom - 01 - preface
fom
12/9/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/9/12
Read Re: fom - 01 - preface
fom
12/9/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/9/12
Read Re: fom - 01 - preface
fom
12/10/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/10/12
Read Re: fom - 01 - preface
Virgil
12/10/12
Read Re: fom - 01 - preface
fom
12/10/12
Read Re: fom - 01 - preface
ross.finlayson@gmail.com
12/11/12
Read Re: fom - 01 - preface
fom
12/12/12
Read Re: fom - 01 - preface
ross.finlayson@gmail.com
12/12/12
Read Re: fom - 01 - preface
Virgil
12/16/12
Read Re: fom - 01 - preface
12/9/12
Read Re: fom - 01 - preface
ross.finlayson@gmail.com
12/9/12
Read Re: fom - 01 - preface
fom
12/9/12
Read Re: fom - 01 - preface
ross.finlayson@gmail.com
12/9/12
Read Re: fom - 01 - preface
12/10/12
Read Re: fom - 01 - preface
fom
12/9/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/8/12
Read Re: fom - 01 - preface
Virgil
12/9/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/9/12
Read Re: fom - 01 - preface
Virgil
12/9/12
Read Re: fom - 01 - preface
Zaljohar@gmail.com
12/9/12
Read Re: fom - 01 - preface
mueckenh@rz.fh-augsburg.de
12/10/12
Read Re: fom - 01 - preface
Dan Christensen
12/11/12
Read Re: fom - 01 - introduction
fom

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.