Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: How to find the roots of non linear equations
Replies: 2   Last Post: Mar 5, 2013 10:12 PM

 Messages: [ Previous | Next ]
 Bob Hanlon Posts: 906 Registered: 10/29/11
Re: How to find the roots of non linear equations
Posted: Mar 5, 2013 4:16 AM

Multiple equations need to be entered as a list

f1 = a*Sin[x]/l0 + b*Sin[x]/l1;
f2 = y*Cos[x]/l0 + y*Cos[x]/l1 - (1/e^y);
soln1 = Solve[{f1 == 0, f2 == 0}, {x, y}] // Simplify

Solve::ifun: Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution
information. >>

{{x -> -ArcCos[(-l0 - l1)/
Sqrt[(l0 + l1)^2]],
y -> ProductLog[
-((l0*l1*Log[e])/
Sqrt[(l0 + l1)^2])]/
Log[e]},
{x -> ArcCos[(-l0 - l1)/
Sqrt[(l0 + l1)^2]],
y -> ProductLog[
-((l0*l1*Log[e])/
Sqrt[(l0 + l1)^2])]/
Log[e]},
{x -> -ArcCos[(l0 + l1)/
Sqrt[(l0 + l1)^2]],
y -> ProductLog[
(l0*l1*Log[e])/
Sqrt[(l0 + l1)^2]]/
Log[e]},
{x -> ArcCos[(l0 + l1)/
Sqrt[(l0 + l1)^2]],
y -> ProductLog[
(l0*l1*Log[e])/
Sqrt[(l0 + l1)^2]]/
Log[e]}}

Verifying

{f1 == 0, f2 == 0} /. soln1 // Simplify

{{True, True}, {True, True}, {True, True}, {True, True}}

Or if the denominators are intended to be the numbers 10 and 11 and e
is intended to be E

f1 = a*Sin[x]/10 + b*Sin[x]/11;
f2 = y*Cos[x]/10 + y*Cos[x]/11 - (1/E^y);
soln2 = Solve[{f1 == 0, f2 == 0}, {x, y}]

Solve::ifun: Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution
information. >>

{{x -> -Pi, y -> ProductLog[
-(110/21)]}, {x -> Pi,
y -> ProductLog[-(110/21)]},
{x -> 0, y -> ProductLog[
110/21]}}

Verifying

{f1 == 0, f2 == 0} /. soln2 // Simplify

{{True, True}, {True, True}, {True, True}}

Bob Hanlon

2013/3/3 Norman Polozka <normanmath@gmail.com>:
> f1=a*Sin[x]/l0 + b*Sin[x]/l1
> f2= y*Cos[x]/l0+ y*Cos[x]/l1 - (1/e^y)
> Solve[f1==0,f2==0,{x,y}]
>

Date Subject Author
3/5/13 Bob Hanlon
3/5/13 Alexei Boulbitch