
Re: Intersection points of two contour plots
Posted:
May 1, 2013 9:40 PM


ContourPlot[Sin[3 x*y] == 0, {x, 3, 3}, {y, 3, 3}, RegionFunction > Function[{x, y}, x*y < 0], Exclusions > {x*y == 0}, ContourStyle > Black]
or
t1 = Table[ If[x*y < 0, Sin[3 x*y], Sequence[]], {x, 3, 3, .1}, {y, 3, 3, .1}];
ListContourPlot[t1, Contours > {0}, ContourShading > False, DataRange > {{3, 3}, {3, 3}}, RegionFunction > Function[{x, y}, x*y < 0], ContourStyle > Black]
Bob Hanlon
On Wed, May 1, 2013 at 3:36 AM, Luiz Melo <lmelo@ufsj.edu.br> wrote:
> Hi group, > Please consider the example below to illustrate my question (the > original problem is somehow much more complicated): > > t1 = Table[Sin[3 x*y], {x, 3, 3, .1}, {y, 3, 3, .1}]; > > t2 = Table[If[x*y < 0, Sin[3 x*y]], {x, 3, 3, .1}, {y, 3, 3, .1}]; > > p1 = ListContourPlot[t1, Contours > {0}, ContourShading > False, > DataRange > {{3, 3}, {3, 3}}, ContourStyle > Black]; > > p2 = ListContourPlot[t2, Contours > {0}, ContourShading > False, > DataRange > {{3, 3}, {3, 3}}, ContourStyle > {Red, Dashed, Thick}]; > > Show[p1, p2] > > Is there a way to show only the results of the intersection of these > two contour plots? > > Thank you > Luiz > >

