Date: Nov 19, 2012 4:49 PM
Author: Vurgil
Subject: Re: Matheology � 152

In article 
<4304750f-ea45-46e7-80bc-1afe4c1310fc@o30g2000vbu.googlegroups.com>,
WM <mueckenh@rz.fh-augsburg.de> wrote:

> On 19 Nov., 01:10, Vurgil <Vur...@arg.erg> wrote:
> > In article
> > <b8d67bf3-ec24-4451-8573-aa0a52799...@y6g2000vbb.googlegroups.com>,
> >
> >
> >
> >
> >
> >  WM <mueck...@rz.fh-augsburg.de> wrote:

> > > On 17 Nov., 23:08, William Hughes <wpihug...@gmail.com> wrote:
> > > > On Nov 17, 5:23 pm, WM <mueck...@rz.fh-augsburg.de> wrote:
> >
> > > > > On 17 Nov., 21:21, William Hughes <wpihug...@gmail.com> wrote:
> >
> > > > > > (nor is there a problem that WM two limits are different)-
> >
> > > > > Interesting. A nice claim.
> > > > > The limit of a sequence may depend on the method which is used to
> > > > > calculate it?

> >
> > > > Nope, but it does depend on which limit is used.
> >
> > > The Cauchy-limit or the Cantor-limit?
> > > 1/((((((10^0)/10)+10^1)/10)+10^2)/10)+ = 0 (Cauchy)
> > > 1/((((((10^0)/10)+10^1)/10)+10^2)/10)+ > 1 (Cantor)

> >
> > Theses are not, as claimed by WM inin another post, anything like
> > continued fractions, so it is not clear what the finite terms are
> > supposed to be.

>
> It is clear to every sufficiently intelligent reader.

> >
> > And without knowing that, no limit can possibly be determined.
> >
> > Now if is just that "1/((((((10^0)/10)+10^1)/10)+10^2)/10)+ " is
> > sufficiently ambiguous that Cauchy and Cantor disagree on what the
> > finite sequences are which leads to this expression, I am not at all
> > surprized.-

>
> Thank you for implicitly confessing that you do not see a way how the
> set theoretical limit { } of the indices of the integer-digits in
>

> > > 0_2 1_1 .
> > > 0_2 . 1_1
> > > 0_4 1_3 0_2 . 1_1
> > > 0_4 1_3 . 0_2 1_1
> > > 0_6 1_5 0_4 1_3 . 0_2 1_1
> > > 0_6 1_5 0_4 . 1_3 0_2 1_1
> > > 0_8 1_7 0_6 1_5 0_4 . 1_3 0_2 1_1
> > > 0_8 1_7 0_6 1_5 . 0_4 1_3 0_2 1_1
> > > ...

>
> can be avoided


Does WW now claim that

1/((((((10^0)/10)+10^1)/10)+10^2)/10)+

somehow produces the sequence
0_2 1_1 .
0_2 . 1_1
0_4 1_3 0_2 . 1_1
0_4 1_3 . 0_2 1_1
0_6 1_5 0_4 1_3 . 0_2 1_1
0_6 1_5 0_4 . 1_3 0_2 1_1
0_8 1_7 0_6 1_5 0_4 . 1_3 0_2 1_1
0_8 1_7 0_6 1_5 . 0_4 1_3 0_2 1_1
...
?


And I certainly DO see ways how WM's nonsense can be avoided.

A simple PLONK would do it, but I find more amusement in seeing WMs
struggles to maintain what little sanity he has left and still support
the insupportable.