```Date: Nov 25, 2012 11:39 PM
Author: kirby urner
Subject: Re: Best answer to child asking "Where does the rational number line start?"

The rational number line has a finite beginning in history.  You may studyits origins.The concept emerged in various lineages, threads, partially overlapping,and continuing through our own day (though some have fizzled, othersstarted up).You can do some kinds of mathematics without any infinite lines of anykind, and still be considered rational.  Depends on your school and itsauthorities.If you're in a school that browbeats you into thinking there's only "oneright math" (or way of teaching it), you might want to shop around.Some maths just have "types" such as integer, float, double, complex,extended, decimal etc.  Rational number may be among them, or not (Python'shas it).No lines may be included in some of these languages (grammars), but youdon't necessarily need them for implementation purposes.If you forget what a "number line" is, don't think you've forgotten thecore of math.  Many maths would live without today's "number line" justfine.  Others wouldn't.KirbyOn Sun, Nov 25, 2012 at 5:23 PM, Jonathan Crabtree <sendtojonathan@yahoo.com.au> wrote:> What is the best answer to the simple question:>> "Where does the rational number line start?">> Yes it goes on forever in both directions and we can all agree on that.Yet does that mean a line that goes forever in two directions does not haveany starting point?>> For on-topic discussion purposes, I'm talking about a single rationalnumber line and not about the real continuous line or complex number plane.>> So where does the rational number line start?>> Or do we tell a child it doesn't start anywhere because it doesn't endanywhere?
```