```Date: Dec 11, 2012 9:36 PM
Author: fom
Subject: Re: fom - 12 - CORRECTED - lexical blocking

Let A and B be propositions.Let A be asserted as true.Then B is in relation toA according to whether ornot there exists a deductionofIMP(A,NOR(B,B))If such a deduction exists,then the subsequent assertionof B is lexically blocked.The corresponding relationin orthocomplemented latticesis called orthogonality.Lattice polynomials are builtfrom meets and joins.  Theexpression above is equivalenttoNOR(NOR(NOR(A,A),B),NOR(A,A),B))that corresponds with-A \/ BTo establish correspondencebetween the lattice polynomialsand the transformation rulesof the deductive system, one musthave that every mapping F fromthe non-atomic propositions intothe lattice                TRU               /   \             /       \           /           \         /               \       /                   \     /                       \   NO                         ALL    |                         |    |                         |    |                         |    |                         |    |                         |    |                         |    |                         |    |                         |    |                         |    |                         |    |                         |  OTHER                      SOME     \                       /       \                   /         \               /           \           /             \       /               \   /                NOTbe such thatF(NOR(x,x)) = -F(x)andF(NOR(NOR(x,y),NOR(x,y))) = F(x) \/ F(y)
```