Date: Mar 12, 2013 5:28 PM
Author: Virgil
Subject: Re: Matheology � 222 Back to the roots

In article 
WM <> wrote:

> On 12 Mrz., 00:51, William Hughes <> wrote:
> > On Mar 11, 10:40 pm, WM <> wrote:
> >

> > > You will never succeed in proving that pot. inf. is
> > > the same as act. inf, since your unsurmountable obstacle is the
> > > requirement that all natural numbers have to be in the list, but
> > > cannot be in one line but must be in one line.

> >
> > In the language of potential infinity, your famous
> >
> > all the natural numbers are in the first column
> > but not in any line becomes

> You talk about the list
> 1
> 2, 1
> 3, 2, 1
> ...
> ?
> Here all columns contain all natural numbers, i.e., each one contains
> all.

> >
> > There is a fixed column, C_1, which is coFIS to
> > |N.   There is no fixed line which is coFIS to |N

> There is no |N in potential infinity.

There is no line whose reversal is the same as any column.
> >
> > There is no problem with either statment.

> There is a problem with the statement, of actual infinity, that all
> natural numbers are in the list but not in any single line.

That claim only holds inside Wolkenmuekenheim, if anywhere, and not
outside Wolkenmuekenheim

> This is in
> contradiction with the fact that
> 1) the union of two finite lines is always a subset of one of the two
> lines
> and
> 2) the list contains only finite lines.

If it were in contradiction, WM should be able to produce a more formal
proof of that claim, but WM is incapable of producing anythng like a
formal proof of anything. Every one of his attempts to do so has been
fatally flawed.
> This should somehow be removed in case of infinitely many lines, but
> it is not. Infinitely many finite numbers do not contain an infinite
> number.

But infinitely many distinct finite numbers do make up the membership of
an actually infinite set of finite numbers. Like |N.

> Infinitely many white balls do not contain a green cube.
Infinitely many of WM's irrelevancies do not make a relevancy.


WM has frequently claimed that a mapping from the set of all infinite
binary sequences to the set of paths of a CIBT is a linear mapping.
In order to show that such a mapping is a linear mapping, WM must first
show that the set of all binary sequences is a vector space and that the
set of paths of a CIBT is also a vector space, which he has not done and
apparently cannot do, and then show that his mapping satisfies the
linearity requirement that
f(ax + by) = af(x) + bf(y),
where a and b are arbitrary members of a field of scalars and x and y
are f(x) and f(y) are vectors in suitable linear spaces.

By the way, WM, what are a, b, ax, by and ax+by when x and y are binary

If a = 1/3 and x is binary sequence, what is ax ?
and if f(x) is a path in a CIBT, what is af(x)?

Until these and a few other issues are settled, WM will still have
failed to justify his claim of a LINEAR mapping from the set (but not
yet proved to be vector space) of binary sequences to the set (but not
yet proved to be vector space) of paths ln a CIBT.

Just another of WM's many wild claims of what goes on in his WMytheology
that he cannot back up.