Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Topic: Can two series, both diverges, multiplied give a series that converges?
Replies: 1   Last Post: Oct 6, 2017 2:25 PM

 bursejan@gmail.com Posts: 5,420 Registered: 9/25/16
Re: Can two series, both diverges, multiplied give a series that converges?
Posted: Oct 6, 2017 2:25 PM

Sorry, for the foundation, we need:

/* the first series */
function rational s(n natural) {
/* something */
}

/* the second series */
function rational t(n natural) {
/* something */
}

/* the product series */
function rational r(n natural) {
return s(n)*t(n);
}

Am Freitag, 6. Oktober 2017 20:24:39 UTC+2 schrieb burs...@gmail.com:
> Corr.:
>
> /* the first series */
> function real s(n natural) {
> /* something */
> }
>
> /* the second series */
> function real t(n natural) {
> /* something */
> }
>
> /* the product series */
> function real r(n natural) {
> return s(n)*t(n);
> }
>
> Am Freitag, 6. Oktober 2017 20:12:42 UTC+2 schrieb burs...@gmail.com:

> > is quite simple to understand:
> >
> > /* the first series */
> > function real s(n real) {
> > /* something */
> > }
> >
> > /* the second series */
> > function real t(n real) {
> > /* something */
> > }
> >
> > /* the product series */
> > function real r(n real) {
> > return s(n)*t(n);
> > }