Drexel dragonThe Math ForumDonate to the Math Forum

Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.

Math Forum » Discussions » Software » comp.soft-sys.math.mathematica

Topic: Problems with fitting a first order differential equation
Replies: 0  

Advanced Search

Back to Topic List Back to Topic List  

Posts: 23
Registered: 10/14/07
Problems with fitting a first order differential equation
Posted: Dec 2, 2011 6:36 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

Dear all,

I have a list of values (2-dimensional). data={{xi,yi}...}
And I finally am able to fit them as the example below:
and find the parameters A and B
data = {{1, 0.033}, {2, 0.054}, {5, 0.088}};
With[{C = 1/9},
model = DSolve[
{y'[t] == -A (y[t])^2 + B (C - y[t]), y[0] == 0},
y[t], t][[1]],
param = FindFit[data, y[t] /. model, {A, B}, t],
Plot[y[t] /. model /. param, {t, 0, Max[data[[All, 1]]]},
ImageSize -> 400, AxesLabel -> {"t", "y[t]"},
Epilog -> {Red, AbsolutePointSize[5], Point[data]}]}]] // Quiet
Thanks to Bob Hanlon.

However I would like to fit the same data by using different exponents
of the term y[t])^2 which appear on the right hand side of the
differential equation:
for example I'd like to use:

{y'[t] == -A (y[t])^3 + B (C - y[t]), y[0] == 0},
{y'[t] == -A (y[t])^(2.5) + B (C - y[t]), y[0] == 0},

Is that anyway to fit a list of two-dimensional by using the models


Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2015. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.