Search All of the Math Forum:
Views expressed in these public forums are not endorsed by
NCTM or The Math Forum.



Frequency array feeds real valued FFT
Posted:
May 8, 2013 6:53 AM


The final goal I am trying to achieve is the generation of a ten minutes time series: to achieve this I have to perform an FFT operation, and it's the point I have been stumbling upon.
Generally the aimed time series will be assigned as the sum of two terms: a steady component U(t) and a fluctuating component u'(t). That is
u(t) = U(t) + u'(t);
So generally, my code follows this procedure:
1) Given data
time = 600 [s];
Nfft = 4096;
L = 340.2 [m];
U = 10 [m/s];
df = 1/600 = 0.00167 Hz;
fn = Nfft/(2*time) = 3.4133 Hz;
This means that my frequency array should be laid out as follows:
f = (fn+df):df:fn;
But, instead of using the whole f array, I am only making use of the positive half:
fpos = df:fn = 0.00167:3.4133 Hz;
2) Spectrum Definition
I define a certain spectrum shape, applying the following relationship
Su = (6*L*U)./((1 + 6.*fpos.*(L/U)).^(5/3));
3) Random phase generation
I, then, have to generate a set of complex samples with a determined distribution: in my case, the random phase will approach a standard Gaussian distribution (mu = 0, sigma = 1).
In MATLAB I call
nn = complex(normrnd(0,1,Nfft/2),normrnd(0,1,Nfft/2));
4) Apply random phase
To apply the random phase, I just do this
Hu = Su*nn;
At this point start my pains!
So far, I only generated Nfft/2 = 2048 complex samples accounting for the fpos content. Therefore, the content accounting for the negative half of f is still missing. To overcome this issue, I was thinking to merge the real and imaginary part of Hu, in order to get a signal Huu with Nfft = 4096 samples and with all real values.
But, by using this merging process, the 0th frequency order would not be represented, since the imaginary part of Hu is defined for fpos.
Thus, how to account for the 0th order by keeping a procedure as the one I have been proposing so far?



