Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: Numbersystems, bijective, p-adic etc
Replies: 23   Last Post: Oct 1, 2013 3:22 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
JT

Posts: 1,042
Registered: 4/7/12
Numbersystems, bijective, p-adic etc
Posted: Sep 30, 2013 11:57 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

When i've played with constructing *zeroless* numbersystems i've come a cross terms like bijective and p-adic, since my formalised knowledge of math terms is null. I wonder what these terms really mean and their origin, and is there a difference between bijective base 10 and p-adic base 10?

My native language is not english so what does a numbersystem being p-adic and bijective really refer to?

Basicly i wonder what does these term bring to the properties and understanding of the numbersystem that is missing by simply using zeroless bases?

I do realise that zeroless basesystem may indeed end up with a different set of arithmetic and calculus. But what does these terms bring that zeroless base can not encapsulate?

I will implement some general purpose p-adic??? numbersystem converter and some basic arithmetic working for any p-adic +,-,*,/ SQR,SQRT maybe

Also i wonder about radix notation, when you use decimals to represent numbers in higher bases then 10, what is this type of numerical notation of a base called.

Base 10 number 1344556
Base 77 number 2,72,59,59,

I have a feeling that radix notation is not the correct term for what i use above or is it?

If i write a basechanging function constructed using p-adic and this comma separated decimal notation system, what should i call it so people in math understand the notation?

A general purpose base changing algorithm using
P-adic and comma separated decimal notation?



Date Subject Author
9/30/13
Read Numbersystems, bijective, p-adic etc
JT
9/30/13
Read Re: Numbersystems, bijective, p-adic etc
JT
9/30/13
Read Re: Numbersystems, bijective, p-adic etc
JT
9/30/13
Read Re: Numbersystems, bijective, p-adic etc
FredJeffries@gmail.com
9/30/13
Read Re: Numbersystems, bijective, p-adic etc
JT
9/30/13
Read Re: Numbersystems, bijective, p-adic etc
Brian Q. Hutchings
9/30/13
Read Re: Numbersystems, bijective, p-adic etc
JT
9/30/13
Read Re: Numbersystems, bijective, p-adic etc
JT
9/30/13
Read Systems of Numerals (not Numbers) (was: Numbersystems, bijective,
p-adic etc)
Rock Brentwood
9/30/13
Read Re: Systems of Numerals (not Numbers) (was: Numbersystems, bijective,
p-adic etc)
JT
9/30/13
Read Re: Systems of Numerals (not Numbers)
Michael F. Stemper
9/30/13
Read Re: Systems of Numerals (not Numbers)
JT
9/30/13
Read Re: Systems of Numerals (not Numbers)
JT
9/30/13
Read Re: Systems of Numerals (not Numbers) (was: Numbersystems, bijective,
p-adic etc)
JT
9/30/13
Read Re: Systems of Numerals (not Numbers) (was: Numbersystems, bijective, p-adic etc)
Virgil
9/30/13
Read Re: Systems of Numerals (not Numbers) (was: Numbersystems, bijective,
p-adic etc)
JT
9/30/13
Read Re: Systems of Numerals (not Numbers) (was: Numbersystems, bijective, p-adic etc)
Virgil
9/30/13
Read Re: Systems of Numerals (not Numbers) (was: Numbersystems, bijective,
p-adic etc)
JT
9/30/13
Read Re: Systems of Numerals (not Numbers) (was: Numbersystems, bijective, p-adic etc)
Virgil
10/1/13
Read base-one accounting for
Brian Q. Hutchings
10/1/13
Read the surfer's value of pi (wokrking on proof
Brian Q. Hutchings
10/1/13
Read Re: the surfer's value of pi (wokrking on proof
Michael F. Stemper
10/1/13
Read Re: the surfer's value of pi (wokrking on proof
Brian Q. Hutchings
10/1/13
Read Re: Numbersystems, bijective, p-adic etc
Karl-Olav Nyberg

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.