
Re: Thick surface cordinates along surface normal.
Posted:
Mar 27, 2014 4:59 AM


pp3d1 = ParametricPlot3D[ {u Cos[v], v, u Sin[v]}, {u, 1, 1}, {v, 0, 1.5 Pi}, PlotStyle > Thickness[.4], Axes > None, Boxed > False]
The outer points are
pts1 = Cases[pp3d1, GraphicsComplex[v_, __] :> v][[1]];
pts1 === pp3d1[[1, 1]]
True
Length[pts1]
4592
For center points
pp3d2 = ParametricPlot3D[ {u Cos[v], v, u Sin[v]}, {u, 1, 1}, {v, 0, 1.5 Pi}, PlotStyle > AbsoluteThickness[1], Axes > None, Boxed > False]
pts2 = pp3d2[[1, 1]];
Length[pts2]
2164
Drawing inner surface between two transparent outer layers
pp3d1 = ParametricPlot3D[{ {u Cos[v], v, u Sin[v]}, {u Cos[v], v, u Sin[v]}}, {u, 1, 1}, {v, 0, 1.5 Pi}, PlotStyle > { {Opacity[.1], Thickness[.4]}, AbsoluteThickness[1]}, Axes > None, Boxed > False]
Bob Hanlon
On Wed, Mar 26, 2014 at 3:22 AM, Narasimham <mathma18@gmail.com> wrote:
> The following shows an example of a surface made of point coordinates at > half thickness distance on each side of surface along normal.How to get a > table of these coordinates on which it is based for any surface? > > ParametricPlot3D[{u Cos[v], v, u Sin[v]}, {u, 1, 1}, {v, 0,1.5 Pi}, > PlotStyle > Thickness[.4], Axes > None, Boxed > False] > > Narasimham > >

