.-q9
~GSP!l8``O`'W AXxbDlCGCBXxbDlCCCb05CXxbDlCCnsxbZXxbDlA`BsHxMUdrag mebDlBB&&b!drag mebDl"Dirichlet regions for three points$((\c+ V<
drag mebDl9KDirections: Drag the end point of the radius segment to change the circle size and see the regions. The points A, B, C can be rearranged to see various possible forms for the Dirichlet regions.ns.s.iPU$hU$h<U ^ (drag mebDlI-{aThe loci of circle intersections trace the boundaries of three Dirichlet regions, each containing one of the points A, B, C. The Dirichlet region containing A, for example, is the set of points P which are closer to A than to any of the other points B or C. It follows that the boundary between two Dirichlet regions is the set where distances to two of the points A, B, C are equal and less than the third distance. Finally, the corner or vertex is the point where the 3 distances to A, B, and C are equal. We recognize this as the circumcenter of triangle ABC. Since the circles have the same radius. The points on the circles have the same distances to the corresponding centers, so the intersection points of two circles are equidistant from two of the three points A, B, C. Q2h
C8CYP| @$6|G
drag mebDlJ. King, U. Washington, 12/94
HHbd
jrag mebDlCCCbCGC?5
krag mebDlCGCCCn?5
mrag mebDlCCnCCCb?rxMH
radiusebDlA`BBB?IIm(Show ExplainDl
i{+n>Hide ExplainDl
jDide ExplainDlCzChEide ExplainDlC|CE5|Fide ExplainDlCEC?
L'1side ExplainDlCGCBC?'Htide ExplainDlCCnCB?'uide ExplainDlCCCbCCf?
`dl
1ide ExplainDlCGCBp?5%F?5%F
*n2ide ExplainDlCCnBp?5%F?5%F
3ide ExplainDlCCCbBp?5%F?5%F
u'nide ExplainDlCEC?CCC?
'pide ExplainDlC|CEC*C?'Pqide ExplainDlCzChC@B?\ray endplainDlC~CBJDHJay endplainDlC-8C=ray endplainDlC~CBJDk>pCKay endplainDlC9Bdpray endplainDlC~CBJDLay endplainDlCzCe0U@sSShow bisectorsDl
8 TsgHide bisectorsDl
uU int w 1/2 spacelC~CBJDC-8C=? int w 1/2 spacelC~CBJDC9B?' int w 1/2 spacelC~CBJDCzCe0U?! UMnt w 1/2 spacelCuCA&$HNnt w 1/2 spacelCbC<8$Pnt w 1/2 spacelCltC{%HQnt w 1/2 spacelC=C=1\%TRnt w 1/2 spacelC|/CR"&Snt w 1/2 spacelCx"C}&hs{ Show rays spacel
!&$%|s Hide rays spacel
eq}{f&$%