Teacher2Teacher |
Q&A #725 |
From: Loyd
To: Teacher2Teacher Public Discussion
Date: 2003022120:01:54
Subject: Re: 1 to 1 correspondence
On 2003022114:42:18, Martin wrote: >How do I solve how many different ways can you put a dozen eggs in the >carton? over 479 million? I do not understand how that answer was >obtained > There is quite abit of info re permutations; got to Google and search on Permutations. ab ba 2 abc acb bac bca cab cba 6 (3 permutations taken 3 at a time.) abcd abdc acbd acdb adbc adcb bacd badc bcbd bcdb bdac bdca cabc cacb cbad cbda cdab cdba dabc dacb dbac dbca dcab 24 ((4 permutations taken 4 at a time.) abcde abced abdce abdec abecd abedc and so forth. If we finished, the number of permutations would be 120 for five permutations taken 5 at a time. The foumula is n! or n factorial. 12 factorial = 479,001,600. The formula is nPr= n! ----- (n-r)! But in this case r=n so that nPn=n! since 0!=1. nPr is the number of permutations that can be made with n objects taken r at a time. Most calculators have the nPr function built in. You enter 12, push the button and enter 12 and the result will be 479,001,600.
Post a reply to this message
Post a related public
discussion message
Ask Teacher2Teacher a new question
[Privacy Policy] [Terms of Use]
Math Forum Home ||
The Math Library ||
Quick Reference ||
Math Forum Search