Hosted by The Math Forum

Problem of the Week 914

Where's Bob?

_____________________________________________
MacPOW Home || Math Forum POWs || Search MacPOW
_____________________________________________

FBI Agent Alice is hot on the trail of computer hacker Bob, who is hiding in one of 17 caves. The caves form a linear array, and every night Bob moves from the cave he is in to one of the caves on either side of it. Alice can search two caves each day, with no restrictions on her choice.

For example, if Alice searches (1 2), (2 3), ..., (16 17), then she is certain to catch Bob, though it might take her 16 days.

What is the shortest time in which Alice can be guaranteed of catching Bob?

Source: John Guilford (Agilent Technologies) and Stan Wagon, based on a simpler problem in Quantum.
© Copyright 2000 Stan Wagon. Reproduced with permission.

[Privacy Policy] [Terms of Use]

_____________________________________
Home || The Math Library || Quick Reference || Search || Help 
_____________________________________

© 1994-2014 Drexel University. All rights reserved.
http://mathforum.org/
The Math Forum is a research and educational enterprise of the Drexel University School of Education.The Math Forum is a research and educational enterprise of the Drexel University School of Education.

07 September 2000