Hosted by The Math Forum## Problem of the Week 1174## Chessboard Solitaire
Start with a regular 8 × 8 chessboard and place a marker on a square. Then duplicate that marker and place the new marker somewhere else on the board. Then duplicate that 2-marker configuration and place the resulting configuration of two markers on empty squares (you can translate in any direction, but you may not rotate, and you must move the whole configuration at once). Then duplicate the resulting configuration of 4 markers and place the new set on 4 open squares. It is easy to cover the whole 8 × 8 board in this way: start with a corner square, translate rightward to fill a row, and then move up to finish. Now start with a 7 × 7 board (49 squares). The largest number of squares that can be covered by the doubling process is 32. Show that it is possible to cover 32 squares in this way.
Unsolved Problem (due to Raphael Robinson): The Amer. Math. Monthly, 98 (1991) 22-24.
© Copyright 2014 Stan Wagon. Reproduced with permission. |

[**Privacy Policy**]
[**Terms of Use**]

Home || The Math Library || Quick Reference || Search || Help

http://mathforum.org/

30 January 2014